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Abstract

The relativistic heat conduction (RHCE) model is particularly important in the analysis of processes involving mov-

ing heat sources (MHS) at speeds or frequencies comparable with those of heat propagation in the medium. This paper

establishes a unified framework for solving heat conduction problems using the RHCE model. It offers ‘‘Fundamental

Solutions’’ in one, two, and three spatial dimensions, for the transient response due to an instantaneous point MHS.

Moreover, it presents the transient response due to a continuous point MHS, the quasi-steady response due a periodic

point MHS, as well as guidelines for solving the RHCE equation under various loading and boundary conditions.

� 2005 Published by Elsevier Ltd.
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1. Introduction

1.1. The relativistic heat conduction model

It is well established that the Fourier equation of heat

conduction,

oh
ot

¼ ar2h ð1Þ

is not compatible with the principles of relativity [1,2], in

that it assumes an infinite speed of heat propagation,

which is physically inadmissible. The hyperbolic heat

conduction equation (HHCE),

1

C2

o2h
ot2

þ 1

a
oh
ot

¼ r2h ð2Þ
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has been extensively used, because it was thought to be

more compatible with the theory of relativity, in the

sense that it acknowledges the finite speed of heat prop-

agation, C. Eq. (1) is a parabolic diffusion equation that

is always stable, while Eq. (2) is similar in form to the

Maxwell (telegraph) equation of an electromagnetic

field. It is a wave equation that allows for a range of phe-

nomena, such as reflection, refraction, diffraction, regen-

eration, resonance, and shock waves; mostly uncommon

for a diffusion process like that depicted by Eq. (1).

Therefore, Eq. (2) is more interesting, fundamentally.

However, in the transition from Eq. (1) to Eq. (2), it

was necessary to change the definition of the heat flux

vector, q, from Fourier�s linear model

q ¼ �krh ð3Þ

to the more controversial form

s0
oq

ot
þ q ¼ �krh; ð4Þ

which is often attributed to Cattaneo [3] and Vernotte

[4]. Eq. (4) was derived based on statistical mechanics
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Nomenclature

C speed of second sound (heat)

g fundamental temperature

h modified temperature

J0, J1 Bessel functions of the first kind

k thermal conductivity

o time unit vector

q heat flux vector

qg heat generation rate

Q dimensionless heat generation

Q0 heat intensity

R 3-D spatial radius

U, Ux speed of moving medium

U dimensionless speed

W dimensionless source frequency

p, q, r, s image (transformed) space dimensions

t, x, y, z space–time dimensions/

source position

T, X, Y, Z dimensionless space–time/

observer position

Greek symbols

a thermal diffusivity

b relativistic speed factor

d delta (pulse) function

C step function

h temperature

q 2-D spatial radius

s0 relaxation time

x source frequency

s, n, w, f source-observer distances

Other symbols

$ gradient operator

$2 Laplacian operator

h quad operator

h2 d�Alembertian operator
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and considerations from the kinetic theory of gases

[2,5,6], which are all mathematically cumbersome. Fur-

thermore, Eq. (4) was verified neither theoretically nor

experimentally [1]. Moreover, it is well established that

Eq. (4) can violate at least one statement of the second

law of thermodynamics [7–9], and can lead to a number

of paradoxical situations.

The relativistic heat conduction (RHCE) model [10]

established the validity of Eq. (2) on the basis of the the-

ory of relativity alone, without worrying about any

microscopic considerations or material-specific calcula-

tions. In fact, the actual mechanism by which heat is

transferred through the medium was found to be irrele-

vant in proving Eq. (2). Yet, to establish Eq. (2) on rel-

ativistic grounds, it was necessary to change the

definition, Eq. (4), of the heat flux vector to the form

q ¼ �k�h ¼ ik
C

oh
ot

oþ arh; ð5Þ

while rewriting Eq. (2) in the form

oh
ot

¼ a�2h ¼ �a

C2

o2h
ot2

þ ar2h: ð6Þ

It was shown in [10] that Eq. (6) satisfies the second law

of thermodynamics, if the heat flux vector is invariant

with respect to a Lorentz transformation, which is the

case for Eq. (5), but not so for Eq. (4).

To avoid confusion, Eq. (6), which requires Eq. (5), is

called the RHCE, while Eq. (2), which requires Eq. (4),

is called the HHCE. Both Eq. (6) and Eq. (2) have ex-

actly the same form, but completely different physical

and conceptual backgrounds. In particular, the RHCE,
thanks to the definition in Eq. (5), is compatible with

the theory of relativity and the second law of thermody-

namics. On the other hand, the HHCE, due to the

anomalous structure of Eq. (4), is compatible with rela-

tivity only artificially (form not concept), and can violate

at least one statement of the second law. Therefore, for

the first time, we seem to have a model for heat conduc-

tion that is in agreement with all known laws of physics.

1.2. Industrial applications

The RHCE model is particularly important for many

manufacturing processes, such as continuous annealing

after cold working; pulsed-laser cutting and welding;

and high speed machining and grinding. In these cases,

a moving and/or periodic heat source is applied to the

surface of a work-material, to induce geometric and/or

structural changes. Technology advances mean that

speeds of motion of these heat sources will continue to

increase.

As argued in [10], these processes suffer very sharp

spatial and temporal temperature gradients. Moreover,

the presence of severe plastic deformation and/or phase

changes imposes significant drag on the mechanisms of

heat propagation. Consequently, speed of heat propaga-

tion under these conditions can be very small indeed.

While experimental data is scarce, we estimate that under

high-speed machining conditions, speed of heat can be in

the 1–1000 m/s range. On the other hand, many of the

above manufacturing processes operate at speeds within

the same range [11]. Therefore, the RHCE model is

essential for the proper analysis of these processes.
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The literature contains many HHCE models for the

moving heat source problem, e.g. [12], but they are all

based on Eq. (4), which is shown in [10] to be invalid.

The objective of this paper is to reformulate fundamen-

tal and general solutions for a variety of heat conduction

problems using a relativistic moving heat source

(RMHS) model, based on the relativistic definition of

the heat flux vector in Eq. (5). Continuous annealing

after wire drawing is a typical example of the RMHS

problem in one spatial dimension. Pulsed laser applica-

tions are examples of periodic RMHS in 2D or 3D.

High-speed orthogonal machining is idealized by a con-

tinuous RMHS in 2D, while grinding is simulated by a

periodic RMHS in 3D. Some of these idealizations are

presented in this work, with the objective of establishing

a general framework for the solution of a wider class of

problems under various loading and boundary condi-

tions. Results obtained from these idealized models will

be applied to specific industrial processes, using typical

loading and boundary conditions and material proper-

ties; and to be published subsequently.
2. The relativistic moving heat source model

Consider a stationary coordinate system, and a rigid

continuous medium moving at a constant velocity, Ux,

along the positive x-axis. In the absence of heat sources,

the relativistic heat conduction equation for a moving

medium is [10]

oh
ot

þ Ux
oh
ox

¼ a�2h; ð7Þ

or, in expanded form

a
1

C2

o
2h
ot2

� o
2h
ox2

� o
2h
oy2

� o
2h
oz2

� �
þ oh

ot
þ Ux

oh
ox

¼ 0: ð8Þ

In the presence of heat generation, whose rate per unit

volume is qg, it becomes

a
1

C2

o2h
ot2

� o2h
ox2

� o2h
oy2

� o2h
oz2

� �
þ oh

ot
þ Ux

oh
ox

¼ 1

k
qgðt; x; y; zÞ; ð9Þ

We seek to obtain general solutions for Eq. (9), subject

to various boundary conditions and heat sources. The

approach adopted in this paper is similar to that

adopted by Carslaw and Jaeger [13], and using many

of the techniques in [14,15]. In particular, we need to

find fundamental solutions of Eq. (9), due to an instan-

taneous point source, with homogeneous (i.e. zero) ini-

tial and boundary conditions. These fundamental

solutions are then used to solve many more problems,

by convolution and integration over space and time.

This procedure is outlined below:
1. We put Eq. (9) in a dimensionless form, that is inde-

pendent of specific material properties, by introduc-

ing the dimensionless quantities

T ¼ C2

2a
t; X ¼ C

2a
x; Y ¼ C

2a
y; Z ¼ C

2a
z;

Q ¼
4aqg
C2k

; U ¼ Ux

C
; W ¼ 2ax

C2
: ð10Þ

Thus, Eq. (9) is transformed into the dimensionless

form

o2h

oT 2
� o2h

oX 2
� o2h

oY 2
� o2h

oZ2
þ 2

oh
oT

þ 2U
oh
oX

¼ QðT ;X ; Y ; ZÞ: ð11Þ

2. We use the method of images [2] to represent

any non-homogeneous boundary conditions. This

method simply replaces any boundary by an equiva-

lent set of heat sources or sinks. For example, adia-

batic boundaries can be simulated by placing a

mirror image of the heat sources on the other side

of the boundary, thus ensuring zero heat flux across

the boundary. Isothermal boundaries are simulated

by placing heat sinks on the other side of the bound-

ary, thus ensuring a constant temperature on the

boundary. Convection and radiation boundary con-

ditions can be simulated by heat sources or sinks,

whose intensity is a function of temperature. The

method of images relieves us from the burden of solv-

ing for various boundary conditions and geometries,

by representing those boundaries as heat sources and

lumping-up them all in the right side of Eq. (11).

3. Actually, as will be shown later, boundary conditions

are not very important in the RHCE, because the

finite speed of heat propagation imposes its own de

facto boundaries. In particular, as long as the heat

wave front has not reached the physical boundaries,

the later are irrelevant. The thermal field acts as if

it was contained by an adiabatic boundary moving

away from the source with a velocity C. After the

wave front reaches the physical boundaries, relativis-

tic effects become insignificant, and the solution of

the RHCE equation reverts to that of the classical

Fourier equation.

4. The principle of superposition applies. Let tempera-

ture at point (X,Y,Z) at time T, due to an instanta-

neous packet of heat released by a source at

point (x,y,z) at time t, be g(T,X,Y,Zjt,x,y,z). Then,
temperature at (T,X,Y,Z), due to all sources, is

obtainable by the convolution integral of all the g-

functions due to all sources over space and time.

Consequently, general solutions to Eq. (11) can be

obtained after finding the fundamental solutions for

o2g

oT 2
� o2g

oX 2
� o2g

oY 2
� o2g

oZ2
þ 2

og
oT

þ 2U
og
oX

¼ d½s�d½n�d½w�d½f�; ð12Þ
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where the d function is

d½a� ¼ 0 for a 6¼ 0;Z 1

�1
d½a�da ¼ 1

ð13Þ

and

s ¼ T � t; n ¼ X � x; w ¼ Y � y; f ¼ Z � z:

ð14Þ

Thus, the right-hand side of Eq. (12) represents an

instantaneous heat pulse at an infinitesimally small

point in space.

5. Eq. (12) can be further simplified by defining a func-

tion h(T,X,Y,Zjt,x,y,z), such that

g � eUX�T h: ð15Þ

Then, Eq. (12) takes the simpler form

o2h

oT 2
� o2h

oX 2
� o2h

oY 2
� o2h

oZ2
þ b2h

¼ eT�UXd½s�d½n�d½w�d½f�; ð16Þ

where

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2 � 1

p
: ð17Þ

If we can solve Eq. (16) for h, then, using Eq. (15), we

can obtain the solution of Eq. (12) for g. Then, by

integration over space and time, we can obtain general

solutions for Eq. (11), or back into Eq. (9), which is

the general equation for a relativistic moving heat

source under any loading or boundary conditions.

The fundamental solutions of Eqs. (16) and (12) will

be presented in Section 3, while some of the general

solutions for Eq. (11), in a 1-D insulated moving wire,

will be covered in Section 4.
3. Fundamental solutions

3.1. Relativistic moving wire

Consider an infinitely long, very thin wire, with

perfect insulation, such that the one-dimensional

approximation applies. The wire is moving in the posi-

tive X-direction with a constant velocity U. At time t,

a tiny packet of heat is released at point x. We wish to

determine the consequent temperature at any point X

and time T. In this case, Eq. (16) becomes

o
2h

oT 2
� o

2h

oX 2
þ b2h ¼ eT�UXd½s�d½n�: ð18Þ

Performing the Laplace Transform of Eq. (18) from

T to s, followed by a Fourier Transform from X to p,

we obtain

hðs; p j t; xÞ ¼ e�stþtþipx�Ux

p2 þ s2 þ b2
: ð19Þ
Using tables for inverse Laplace and inverse Fourier

Transforms [14], we go backward from Eq. (19), from p

to X, then from s to T, and obtain

hðT ;X j t; xÞ ¼ 1

2
et�UxJ 0 b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2� j nj2

q� �
CðsÞCðs� j n jÞ;

ð20Þ

where J0 is Bessel function of the first kind of order zero,

and C is the step function

CðaÞ ¼
1 a P 0

0 a < 0:

�
ð21Þ

Then, from Eq. (15) we obtain

gðT ;X j t; xÞ

¼ 1

2
e�sþUnJ 0 b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2� j nj2

q� �
CðsÞCðs� j n jÞ: ð22Þ

When the point source is located at the origin, x = t = 0,

Eq. (22) reduces to

gðT ;X j 0; 0Þ

¼ 1

2
e�TþUX J 0 b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2� j X j2

q� �
CðT ÞCðT� j X jÞ: ð23Þ

When the wire is not moving, U = 0, the transient re-

sponse from Eq. (23) is shown in Fig. 1. This can be best

understood when compared with the equivalent solution

using a classical (Fourier) equation of heat conduction

[13], Fig. 2. The classical solution is singular at the origin

(x = t = 0), and decays exponentially with distance, and

inversely with time. However, the intriguing phenome-

non is that, even at t = 0, a solution for temperature ex-

ists as far as infinity in space and time. In the RHCE

solution, the finite speed of heat imposes a restriction

on the solution, and confines it to a finite space. First,

the solution is finite, even at the origin. Second, the solu-

tion does not extend to infinity. For example, at T = 4,

the heat wave fronts would have reached X = ±4. Areas

of the wire beyond the wave fronts are completely una-

ware of the heat source and remain unaffected, showing

zero change in temperature. The finite region of matter

between the two wave fronts clearly has a finite temper-

ature distribution. As the wave fronts spread away from

the source, there is an increasing volume of matter con-

tained and, temperature continuously declines. After

very long time, the wave fronts approach infinity, and

the RHCE solution approaches the classical solution.

Therefore, it can be concluded that the effect of the

finite speed of heat propagation is equivalent to imposing

an adiabatic boundary moving away from the source with

a speed C. This effect is demonstrated by the presence of

adiabatic bands in several manufacturing processes. This

also explains why, in the transient response, actual phys-

ical boundary conditions are not important, since the

wave front excludes the effects of those boundaries. This

is expected, given that Eq. (6) or (8) is, after all, a wave



Fig. 1. Fundamental solution due to an instantaneous point source on a moving wire, U = 0.

Fig. 2. Classical solution due to an instantaneous point source on a moving wire, U = 0.
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equation. The presence of the first-order time derivative

of temperature, serves only as a dissipative term causing

energy content of the wave to diffuse as time passes.

The effect of movement of the medium relative to the

source can be understood by inspecting Eq. (11). The ef-

fect of speed enters the equation as a first-order deriva-

tive with respect to X. Therefore, its effect on the wave

propagation is similar to the diffusive effect of the time

derivative. However, this effect is anisotropic with re-

spect to the direction of motion. Ahead of the source,

it has a dissipative effect, while behind the source it

has a generative effect. This can be seen in Fig. 3, where

temperature decay downstream is much greater than the

decay upstream. At T = 4, the heat front is at X = ±4,

while the heat source itself becomes at X = �2, effec-
tively convecting heat from one side of the medium to

the other side. The effect of a moving source is equivalent

to the convection of heat from downstream to upstream,

with a convection coefficient proportional to relative

velocity.

In Fig. 4, the heat source is moving with U = �1. At

T = 4, the wave fronts are at X = ±4 and the heat source

itself is at X = �4, just on top of the �X front. Effec-

tively, the �X wave front is annihilated by the source,

and all content of the heat source convected towards

the +X front. It is also interesting to note that tempera-

ture at the +X front becomes constant and does not de-

cay with time. This is because the heat convected

upstream is large enough to maintain the +X front at

both adiabatic and isothermal conditions.



Fig. 3. Fundamental solution due to an instantaneous point source on a moving wire, U = 0.5.

Fig. 4. Fundamental solution due to an instantaneous point source on a moving wire, U = 1.
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It is important to note here that the heat convection

is partially imaginary, and does not actually happen, as

can be seen from the relativistic definition of the heat

flux vector, Eq. (5). Because of the finite speed of heat

propagation, there is a lag in transmission of informa-

tion about heat. A certain point in the medium is

responding to various pieces of information about the

heat source, which arrive simultaneously, but are trans-

mitted at different times. This information lag interferes

destructively downstream and constructively upstream,

thus leading to diminished temperature in one side and

a temperature overshoot on the other. This overshoot

is clearly demonstrated in Fig. 5, where the heat source

is moving at twice the speed of heat propagation. A

point of matter below the +X front is receiving false

information, about the amount of heat being convected,
and accordingly responds by a temperature overshoot.

Yet, this overshoot has to be equilibrated by a negative

temperature in the wake of the wave front, Fig. 6.

In terms of classical waves, there are speeds of the

source at which resonance, shock waves, and negative

wakes can occur. The particular feature about heat

waves is that they tend to diffuse (correct false informa-

tion) with the passage of time, and after sufficiently long

time, the RHCE model converges to the classical Fou-

rier model.

3.2. Relativistic moving half-plane

Consider a very thin sheet, perfectly insulated on

both faces, and extending to infinity in the X � Z,

ZP 0 half-plane. The thin sheet is moving with a con-



Fig. 6. Cross section on Fig. 5 showing temperature-overshoot and the negative wake.

Fig. 5. Fundamental solution due to an instantaneous point source on a moving wire, U = 2.
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stant velocity, U, along the +X direction. At time t, a

heat packet is released at point (x,z). We wish to find

the temperature at any point (X,Z) and time T, in tran-

sient response to that heat source. In this case, Eq. (16)

becomes

o2h

oT 2
� o2h

oX 2
� o2h

oZ2
þ b2h ¼ eT�UXd½s�d½n�d½f�: ð24Þ

We take the Laplace transform from T to s, then the

Laplace transform from Z to r, then the Fourier trans-

form from X to p, to get

hðs; p; r j t; x; zÞ ¼ e�stþtþipx�Ux�rz

p2 � r2 þ s2 þ b2
: ð25Þ

Using tables for inverse Laplace and inverse Fourier

transforms [14], we go backward from Eq. (25), from p

to X, then from r to Z and from s to T, to obtain
hðT ;X ; Z j t; x; zÞ

¼
et�Ux cos b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�f2 þ s2� j nj2

q� �

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�f2 þ s2� j nj2

q
� CðfÞCðsÞCðs� j n jÞC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2� j nj2

q
� f

� �
: ð26Þ

Then, according to Eq. (15), we get

gðT ;X ; Z j t; x; zÞ

¼
e�sþUn cos b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�f2 þ s2� j nj2

q� �

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�f2 þ s2� j nj2

q
� CðfÞCðsÞCðs� j n jÞC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2� j nj2

q
� f

� �
: ð27Þ
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If the point source is located at the origin,

t = x = z = 0, then Eq. (27) simplifies to

gðT ;X ; Z j 0; 0; 0Þ

¼
e�TþUX cos b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Z2 þ T 2� j X j2

q� �

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Z2 þ T 2� j X j2

q
� CðZÞCðT ÞCðT� j X jÞC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2� j X j2

q
� Z

� �
: ð28Þ

Due to the three-dimensional nature of Eq. (28), it is dif-

ficult to visualize the complete temperature field. We will

only consider the temperature field (1) on the surface,

Z = 0, (2) variation with depth below the origin, X = 0,

and (3) the spatial distribution at some specific instance

in time. Again, the temperature distribution does not ex-

tend to infinity in space and time. It is confined within a

volume defined by an expanding adiabatic boundary

associated with the wave front. In two spatial dimensions,

the wave front is actually a semi-circle, with a centre at

the origin and a radius running outward with a speed C.

Fig. 7 shows the variation of temperature below the

origin, X = 0, which naturally decays rapidly with depth

below the surface. This variation is independent of the

speed of the heat source. Fig. 8 shows temperature dis-

tribution in the X–Z plane at a certain time. It shows

clearly the wave front spreading radially away from

the source. In fact, Eq. (27) can be put in a simpler form,

if we define the radius of the wave front

�q2 ¼ f2þ j nj2; ð29Þ
then we have

gðT ;X ; Z j t; x; zÞ

¼
e�sþUn cos b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � �q2

p� �
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � �q2

p CðfÞCðsÞCðs� �qÞ: ð30Þ
Fig. 7. Fundamental solution in a moving half
Figs. 9–12 show the transient response at the surface,

Z = 0, at various speeds, which is qualitatively similar to

that for a moving wire, Section 3.1. Here again, relative

movement of the source creates a bias between upstream

and downstream. In the downstream, temperature rise is

suppressed, while upstream, it is magnified. At U = 1,

again, an adiabatic isothermal boundary condition

develops along the +X wave front. As speed of the heat

source exceeds that of heat propagation, temperature at

the wave front overshoots to high values, followed by a

negative temperature wave on its wake. Therefore, there

seems to be no fundamental difference between the cases

of one and two spatial dimensions. It is just that both of

the temperature overshoot at the wave front and the

negative wake are actually propagating radially in the

X–Z plane.
3.3. Relativistic moving half-space

Consider the infinite half-space, extending along

all of the three spatial dimensions, and confined by the

surface ZP 0. An infinitesimal (point) heat source is

moving with a constant velocity U along the negative

X-axis. At time t, the point source is at point (x,y,z)

when it releases a packet of heat. We wish to find the

temperature distribution at time T, at any point

(X,Y,Z). In this case, the general equation, Eq. (16),

applies.

We take the Laplace transform from T to s, then

from Z to r. Next, we take the Fourier transform from

X to p, then from Y to q, to obtain
hðs; p; q; r j t; x; y; zÞ ¼ e�stþtþipx�Uxþiqy�rz

p2 þ q2 � r2 þ s2 þ b2
: ð31Þ
-plane and depth variation, U = 1, X = 0.



Fig. 8. Fundamental solution in a moving half-plane, spatial distribution, U = 0, T = 4.

Fig. 9. Fundamental solution on the surface of a moving half-plane, U = 0, Z = 0.
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Using inverse Laplace and Fourier transform tables,

we go back from p to X, s to T, r to Z, and q to Y, and

finally get

hðT ;X ; Y ; Z j t; x; y; zÞ

¼ et�Ux

4p
d½s� q�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � �q2

p
 

�
bCðs� qÞJ 1 b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � q2

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � q2

p
1
ACðsÞCðfÞ; ð32Þ

where J1 is Bessel function of the first kind of first-order,

and
q2 ¼ n2 þ w2 þ f2; �q2 ¼ n2 þ f2: ð33Þ
Consequently, from Eq. (15), the fundamental solution

to Eq. (12) is
gðT ;X ; Y ; Z j t; x; y; zÞ

¼ e�sþUn

4p
d½s� q�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � �q2

p
 

�
bCðs� qÞJ 1 b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � q2

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � q2

p
1
ACðsÞCðfÞ: ð34Þ



Fig. 10. Fundamental solution on the surface of a moving half-plane, U = 0.5, Z = 0.

Fig. 11. Fundamental solution on the surface of a moving half-plane, U = 1, Z = 0.
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If the heat source is located at the origin,

t = x = y = z = 0, then Eq. (34) simplifies to

gðT ;X ; Y ; Z j 0; 0; 0; 0Þ

¼ e�TþUx

4p
d½T � R�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � R

2
p
 

�
bCðT � RÞJ 1 b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � R2

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � R2

p

1
ACðT ÞCðZÞ; ð35Þ

where

R2 ¼ X 2 þ Y 2 þ Z2; R
2 ¼ X 2 þ Z2: ð36Þ
It is difficult to visualize Eq. (35) graphically, but it

poses no fundamental challenge. It is much similar to

the behaviour for one and two-dimensional problems.

Essentially, the fundamental solution of the RHCE

model is the same regardless of dimensionality: a wave

that declines in both frequency and amplitude as it

spreads away from the source in space–time. The effect

of dimensionality is only a choice among various trig-

onometric or Bessel functions used to describe the

wave. If we think of some radial axis between the

source point and the observation point, then all funda-

mental behaviour can be observed along that axis.

Namely, a wave front spreading away from the source

point with a velocity C, the magnitude of the wave de-



Fig. 12. Fundamental solution on the surface of a moving half-plane, U = 2, Z = 0.
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cays with time and its frequency is also reduced. Move-

ment of the heat source creates a convective effect,

causing suppression of temperature on the downstream

and temperature overshoot (and possibly a negative

wake) on the upstream.
4. General solutions in a moving wire

Now, that we obtained fundamental solutions of the

RHCE equation, for various dimensions, it is now pos-

sible to obtain general solutions for any type of loading.

The fundamental solution is the transient response due

to an instantaneous point source. In case of multiple

sources, or sources that extend over lines, areas, or vol-

umes, we simply integrate individual fundamental solu-

tions, due to each point source, over space. If the heat

source intensity is a function of time, we obtain the gen-

eral solution by convolving the fundamental solution

with the time function for intensity. This process is

mathematically straightforward. In many cases, the inte-

gration can be obtained in closed-form. In other cases,

numerical integration may be more convenient. For very

complex geometries, a finite element formulation may be

needed.

In this section, we present general solutions for the

continuous and for the periodic moving point sources

in a wire. This choice is because

(a) It is two dimensional and easy to visualize

graphically,

(b) The higher dimension problems do not pose any

additional conceptual difficulty,

(c) The RHCE transient response is mostly indepen-

dent of the details of geometry and boundary con-

ditions, and
(d) It is possible to simulate any time-dependent heat

history by the linear superposition of a number of

periodic and/or continuous heat sources.
4.1. Continuous moving point source

Consider the problem described in Section 3.1. How-

ever, instead of the source being an instantaneous packet

released at t, the heat source becomes continuous from t

to T and has intensity Q0. Temperature at any point in

the wire is obtained by the convolution of Q0 with the

fundamental solution given in Eq. (22). That is

hðT ;X Þ ¼ Q0

2

Z T

0

et�T�UxþUX J 0 b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT � tÞ2 � n2

q� �
� CðT � tÞCðT � t� j n jÞdt ð37Þ

or after some re-arrangement

hðT ;X Þ ¼ Q0e
Un

2
CðsÞCðs� j n jÞ

�
Z T

n
e�sJ 0 b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � n2

q� �
ds: ð38Þ

If the source is located at the origin, t = x = 0, Eq.

(38) becomes

hðT ;X Þ ¼ Q0e
UX

2
CðT ÞCðT� j X jÞ

�
Z T

n
e�sJ 0 b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � n2

q� �
ds: ð39Þ

Perhaps, it would be useful to consider, first, the classical

solution for the continuous point source in a moving

wire [1], as shown in Fig. 13. First, the solution extends

to infinity in both directions. Second, while temperature

decays in the downstream, it remains constant upstream.



Fig. 13. Quasi-steady temperature distribution due to a ‘‘classical’’ point source moving along +x-axis of an insulated wire.
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The only effect of the speed of the point source is an in-

versely proportional scaling down on temperature, sim-

ply because at higher speed there is more volume per

unit heat. This is to be compared with Figs. 14–18,

which show the transient response due to a continuous

point RMHS at various velocities.

There are a number of interesting points to be noted

1. The relativistic model predicts a continuously

increasing temperature field, e.g. Fig. 14. This is nat-

urally expected, given that the wire is perfectly insu-

lated and there is continuous supply of heat.

Because of the finite speed of heat propagation (adi-

abatic condition at the wave fronts), the wire is no

longer of infinite length, and temperature has to rise
Fig. 14. Continuous point sourc
with time. The rise, however, occurs at a decreasing

rate, because the volume contained between the two

wave fronts is also increasing with time.

2. Just like the instantaneous response, Section 3.1, the

effect of source speed is the convection of heat from

downstream to upstream, causing temperature

build-up on the upstream and behind the +X wave

front. When there is no source motion, U = 0, Fig.

14, the temperature field is symmetric. However,

as speed increases, Fig. 15 and Fig. 16, the quasi-

steady relativistic field resembles the classical field.

Indeed, for U < 1, we can see that, after very long

time, the wave fronts approach infinity and the tem-

perature distribution in Fig. 16 approaches that in

Fig. 13.
e on a moving wire, U = 0.



Fig. 15. Continuous point source on a moving wire, U = 0.5.

Fig. 16. Continuous point source on a moving wire, U = 1.
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3. While the classical solution is sensitive to source

speed only as a scaling factor, the relativistic solution

is more critically sensitive to source speed. For U > 1,

there is a temperature overshoot at the wave front

followed by a negative temperature region in its

wake, Figs. 17 and 18. This is exactly the same behav-

iour as for the instantaneous point source.

4. Temperature overshoot at the wave front and the

negative wake have no upper limit and continue to

increase as U continues to increase above one. This

is clear from comparing the temperature scales in

Fig. 17 and Fig. 18. Moreover, temperature contin-

ues to rise at the wave front with the progression of

time, even for the same source speed.
It is not hard to contemplate the devastating effects

that may arise in a manufacturing process, e.g. machin-

ing, in which a continuous heat source runs on the sur-

face of a medium with a speed higher than the speed of

heat propagation. For example, with one point, at the

wave front, expanding rapidly while another point at

the wake contracting, there can be severe thermal stres-

ses and damage to the structure of the material. If this

thermal overshoot is allowed to continue, soon the

material will reach the melting point, or some other ma-

jor phase change. These phase changes are likely to

change thermal properties of the medium, including

speed of heat propagation, and prevent this catastrophic

behaviour from continuing.



Fig. 17. Continuous point source on a moving wire, U = 1.5.

Fig. 18. Continuous point source on a moving wire, U = 2.
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4.2. Periodic moving point source

Consider the problem described in Section 3.1. How-

ever, instead of the source being an instantaneous packet

released at t, the heat source becomes a periodic func-

tion of the form

Q ¼ Q0e
iWt ¼ Q0ðcos½Wt� þ i sin½Wt�Þ: ð40Þ

Here, it is interesting to compare Eq. (40) with the rela-

tivistic definition of the heat flux vector, Eq. (5). The

heat flux is a complex number that has a real component

along the spatial gradients and an imaginary component

along the temporal gradient. The corresponding compo-
nents are shown in Eq. (40). This indicates that, in gen-

eral, temperature is also a complex number, which is

expected, since heat is a wave phenomenon whose

behaviour can suffer phase-lag and other wave-like

behaviour, when subjected to a periodic loading.

As usual, temperature at any point (T,X), due to a

periodic point heat source at point x and starting at

T = t, is obtained by the convolution of the load func-

tion, Eq. (40), and the fundamental solution, Eq. (22).

That is

hðT ;X Þ ¼ Q0

2

Z T

0

et�TþiWtþUnJ 0 b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT � tÞ2 � n2

q� �
� CðT � tÞCðT � t� j n jÞdt ð41Þ



Fig. 19. Quasi-steady periodic response in a stationary wire, W = 1.

Fig. 20. Quasi-steady periodic response in a stationary wire, U = 0, W = 2.
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or, after some rearrangement

hðT ;X Þ ¼ Q0e
iWTþUn

2
CðsÞCðs� j n jÞ

�
Z T

n
e�sð1þiW ÞJ 0 b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � n2

q� �
dt: ð42Þ

After sufficiently long time, T !1 and T � n, a

quasi-steady-state prevails, for which the integral in

Eq. (42) approaches a Laplace transform from t to

1 + iW. Consequently, in the quasi-steady-state, temper-

ature is given by

hðT ;X Þ ¼ Q0e
iWTþUn�Abs½n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2�1þð1þiW Þ2

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2 � 1þ ð1þ iW Þ2

q ; ð43Þ
or if the source is located at the origin, x = 0,
hðT ;X Þ ¼ Q0e
iWTþUX�Abs½X �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2�1þð1þiW Þ2

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2 � 1þ ð1þ iW Þ2

q : ð44Þ
As predicted earlier, temperature in Eq. (43) or (44) is in-

deed a complex number.

From inspection of Eq. (40), we can see that the real

component of the temperature field is driven by a cosine

wave, while the imaginary component is driven by a sine

wave. Both waves are identical except for a p/2 phase

shift. This is, in fact, the case for all plots of the temper-

ature distribution in Eq. (44): the imaginary component



Fig. 21. Quasi-steady periodic response in a moving wire, U = 0.5, W = 2.

Fig. 22. Quasi-steady periodic response in a moving wire, U = 1, W = 2.
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is identical in shape to the real component except for a

p/2 phase shift. Therefore, due to space limitations, we will

show only the real component of the temperature field.

At zero frequency, W = 0, the integral in Eq. (42) is

identical to the integral in Eq. (38), i.e. a zero-frequency

periodic source is just the same as the continuous point

source in Section 4.1. Actually, it is easy to shown that

Eq. (44), with W = 0, is also the quasi-steady-state solu-

tion for the continuous point source. Moreover, Eq.

(44), with W = 0, is similar in form to the quasi-steady

classical solution for a continuous point source.

At non-zero source frequency, the quasi-steady tem-

perature field is that of a standing wave localized around

the source point. It continues to change in time, com-

pletely in phase with the source at the source point,

and increasingly out of phase at other locations further
away from the source, Fig. 19. However, and as ex-

pected, due to diffusive nature of the wave, it does not

spread far away from the source along the wire.

The effect of increased source frequency is an identi-

cal increase in temperature frequency, as can be seen by

comparing Fig. 19 and Fig. 20. The effect of source

speed is similar to that in all previous cases. As source

speed increases, it creates a bias in the field, with more

heat going upstream than downstream. This is demon-

strated in Fig. 21, where the wave is drifting more in

the upstream while being diminished in the downstream.

Again, at U = 1, the wave does not decay in magnitude,

Fig. 22, while at source velocities higher than that criti-

cal speed, there can be one or more temperature over-

shoots and wakes, Fig. 23. The number and phase of

those peaks and wakes depend on the source frequency.



Fig. 23. Quasi-steady periodic response in a moving wire, U = 2, W = 2.

Fig. 24. Absolute (observable) temperature, whose real component is Fig. 23.
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Finally, one might ask, what do thermometers and

thermocouple measure, the real or the imaginary com-

ponent of the temperature? Given the similarity between

the RHCE model and some aspects of the wave function

from quantum mechanics, it would seem that thermo-

couples measure the ‘‘observable’’, i.e. the amplitude

or absolute value of temperature. This can be obtained

by multiplying Eq. (44) by its complex conjugate. For,

example, Fig. 24 shows the temperature amplitude for

the same conditions as those in Fig. 23.
5. Conclusion

Relativistic heat conduction is a description of heat

propagation that is much similar to classical wave
mechanics, electrodynamics, and quantum mechanics.

A heat source emits a wave that propagates radially,

with a speed C, away from the source in a 4-D space–

time. The wave front acts as an adiabatic boundary con-

dition, preventing the temperature field from running

ahead of the heat flux field. Meanwhile, the wave is dif-

fusive, and both of its magnitude and frequency decay as

the wave spreads outward. If left alone, or in the quasi-

steady-state, the wave front approaches infinity, and the

temperature field approaches the one predicted from the

classical theory. However, the presence of fast-moving

heat sources and/or high frequency excitations, give rise

to relativistic effects similar to those observed in wave

mechanics. This is mainly due to the possibility of the

presence of a phase lag between the temperature and

heat flux fields, as manifested by their complex number
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presentation. The effect of source movement is to create

a bias upstream with the possibility of temperature over-

shoot. All of these effects can have catastrophic implica-

tion in many practical situations.
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éliminant le paradoxe d�une propagation instantanée,

Compte. Rend. 247 (4) (1958) 431–433.

[4] P. Vernotte, Les paradoxes de la theorie continue de

l�équation de la chaleur, Compte. Rend. 246 (22) (1958)

3154–3155.

[5] A.H. Ali, Statistical mechanical derivation of Cattaneo�s
heat flux law, J. Thermophys. Heat Transfer 13 (4) (1999)

544–546.

[6] M. Chester, Second sound in solids, Phys. Rev. 131 (15)

(1963) 2013–2015.
[7] C. Bai, A.S. Lavine, On hyperbolic heat conduction and

the second law of thermodynamics, J. Heat Transfer,

Trans. ASME 117 (2) (1995) 256–263.

[8] A. Barletta, E. Zanchini, Hyperbolic heat conduction and

local equilibrium: a second law analysis, Int. J. Heat Mass

Transfer 40 (5) (1997) 1007–1016.

[9] M.B. Rubin, Hyperbolic heat conduction and the second

law, Int. J. Eng. Sci. 30 (11) (1992) 1665–1676.

[10] Y.M. Ali, L.C. Zhang, Relativistic heat conduction,

Int. J. Heat Mass Transfer, in press, doi:10.1016/j.ijheat

masstransfer.2005.02.003.

[11] L. Zhou, J. Shimizu, A. Muroya, H. Eda, Material

removal mechanism beyond plastic wave propagation rate,

Precision Eng. 27 (2) (2003) 109–116.

[12] N.S. Al-Huniti, M.A. Al-Nimr, M. Naji, Dynamic

response of a rod due to a moving heat source under the

hyperbolic heat conduction model, J. Sound Vibrat. 242 (4)

(2001) 629–640.

[13] H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids,

second ed., University Press, Oxford, 1959.

[14] W. Magnus, F. Oberhettinger, Formulas and Theorems

for the Functions of Mathematical Physics, Chelsea

Publishing, New York, 1949.

[15] D.G. Duffy, Green�s Functions with Applications, Chap-

man and Hall/CRC, Boca Raton, FL, 2001.

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.02.003
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.02.003

	Relativistic moving heat source
	Introduction
	The relativistic heat conduction model
	Industrial applications

	The relativistic moving heat source model
	Fundamental solutions
	Relativistic moving wire
	Relativistic moving half-plane
	Relativistic moving half-space

	General solutions in a moving wire
	Continuous moving point source
	Periodic moving point source

	Conclusion
	References


